A Method for Plotting Failure Envelopes of Unidirectional Polymer Composite Materials under Different Strain Rates

Author:

Liu Hao1ORCID,Pang Yuezhao2,Su Dandan3,Wang Yifan3,Dong Ge1

Affiliation:

1. School of Aerospace Engineering, Tsinghua University, Beijing 100084, China

2. College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin 150001, China

3. School of Special Engineering, Bauman Moscow State Technical University, Moscow 105005, Russia

Abstract

This article emphasizes the significance of investigating the nonlinear behavior and strength characteristics of polymer composite materials under various strain rates. The study utilizes test results of a unidirectional (UD) composite material subjected to compression at different angles relative to the reinforcement direction, using quasi-static, static, and dynamic strain rates. The analysis focused on a UD layer experiencing compressive stresses perpendicular to the fiber reinforcement and in-plane shear stresses. A novel model is presented, enabling the calculation and prediction of the strength of a UD composite under uniaxial loading at different angles to the fiber direction, considering various strain rates. The developed model facilitates the derivation of equations for the failure envelopes of UD Carbon Fiber-Reinforced Polymers (CFRPs) under quasi-static, static, and dynamic loading conditions. To construct the failure envelopes of CFRPs, it is necessary to acquire experimentally determined values of tensile and compressive strength in the direction perpendicular to the reinforcement, as well as the ultimate strength in uniaxial compression of a specimen with reinforcement at a 45° angle to the loading axis. The failure envelopes generated using the proposed model exhibit excellent agreement with experimental data, with coefficients of determination ranging from 0.864 to 0.957, depending on the deformation rate. Consequently, the developed model holds promise for predicting the strength of other UD polymer composite materials.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3