Big Data and AI-Driven Product Design: A Survey

Author:

Quan Huafeng1,Li Shaobo2ORCID,Zeng Changchang3,Wei Hongjing4ORCID,Hu Jianjun5ORCID

Affiliation:

1. College of Big Data and Statistics, Guizhou University of Finance and Economics, Guiyang 550050, China

2. State Key Laboratory of Public Big Data, Guizhou University, Guiyang 550050, China

3. School of Computer Science, Civil Aviation Flight University of China, Guanghan 618307, China

4. School of Mechanical Engineering, Guizhou Institute of Technology, Guiyang 550050, China

5. Department of Computer Science and Engineering, University of South Carolina, Columbia, SC 29201, USA

Abstract

As living standards improve, modern products need to meet increasingly diversified and personalized user requirements. Traditional product design methods fall short due to their strong subjectivity, limited survey scope, lack of real-time data, and poor visual display. However, recent progress in big data and artificial intelligence (AI) are bringing a transformative big data and AI-driven product design methodology with a significant impact on many industries. Big data in the product lifecycle contains valuable information, such as customer preferences, market demands, product evaluation, and visual display: online product reviews reflect customer evaluations and requirements, while product images contain shape, color, and texture information that can inspire designers to quickly generate initial design schemes or even new product images. This survey provides a comprehensive review of big data and AI-driven product design, focusing on how big data of various modalities can be processed, analyzed, and exploited to aid product design using AI algorithms. It identifies the limitations of traditional product design methods and shows how textual, image, audio, and video data in product design cycles can be utilized to achieve much more intelligent product design. We finally discuss the major deficiencies of existing data-driven product design studies and outline promising future research directions and opportunities, aiming to draw increasing attention to modern AI-driven product design.

Funder

Guizhou Provincial Basic Research Progra

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3