Performance Analysis of Multiple Steel Corrugated Pipe Arch Culvert under Construction and Periodic Vehicle Load

Author:

Bao Xiaohua1ORCID,Wu Xianlong1,Shen Jun1ORCID,Wu Shidong1,Chen Xiangsheng1,Cui Hongzhi1

Affiliation:

1. Key Laboratory for Resilient Infrastructures of Coastal Cities, MOE, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China

Abstract

The arrangement of multiple culverts has gradually increased in road engineering. However, the arrangement will face a series of risks in both the construction and operation stages. A numerical model was established to analyze the construction and operation safety of multiple steel corrugated pipe arch culverts by using a fully fluid–solid coupling two-dimensional (2D) model of a highway project. The sensitivity of factors affecting the settlement of the composite foundation such as modulus and depth of ground reinforcement was discussed. Based on the results of the 2D model, a fully fluid–solid coupling three-dimensional (3D) model was established to study the influence of dynamic cyclic vehicle load on the mechanical properties of multiple steel corrugated pipe arch culverts. The ground deformation, soil stress and pore pressure, structure stress, and deformation were analyzed. The results show that the maximum settlement of the soil in the arch culvert area is at the junction of the two different arch culverts after construction. The maximum vertical deformation of the structure appears at the vault, and the arch waist is prone to stress concentration. Under cyclic vehicle dynamic load, the ground deformation, structural stress, and arch culvert subgrade deformation showed a rapid growth stage, and then tended to be stable. The weak points in the structure during the construction and operation stages were revealed, which can provide a useful reference for the design and construction of multiple steel corrugated pipe arch culverts.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Technical Innovation Foundation of Shenzhen

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3