Energy Management Strategy Based on V2X Communications and Road Information for a Connected PHEV and Its Evaluation Using an IDHIL Simulator

Author:

Ha Seongmin12ORCID,Lee Hyeongcheol3

Affiliation:

1. Department of Electrical Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea

2. Strategic Planning Division, Korea Intelligent Automotive Parts Promotion Institute, 201, Gukgasandanseo-ro, Guji-myeon, Dalseong-gun, Daegu 43011, Republic of Korea

3. Department of Electrical and Biomedical Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea

Abstract

Conventional energy management strategies (EMSs) of hybrid electric vehicles (HEVs) only utilize in-vehicle information, such as an acceleration pedal, velocity, acceleration, engine RPM, state of charge (SOC), and radar. This paper presents a new EMS using out-vehicle information obtained by vehicle to everything (V2X) communication. The new EMS integrates cooperative eco-driving (CED) guidance and an adaptive equivalent consumption minimum strategy (A-ECMS) based on V2X communication information and road information. CED provides a guide signal and a guide speed to the driver. It guides pedal behavior in terms of coasting driving, acceleration and deceleration, and target speed. A-ECMSs calculate the target SOC based on the simplified road information of the planned route and reflects it in the equivalent factor. An integrated driving hardware-in-the-loop (IDHIL) simulator is also built to prove the new EMS by integrating a V2X communication device, a VANET simulator, and a vehicle simulator. The IDHIL test results demonstrate the validity and performance of the proposed EMS in a V2X communication environment.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3