Quantitative Analysis of the Stability of a Mud-Return Circulation System in a Riserless Mud-Recovery Drilling System

Author:

Qin Rulei12,Lu Qiuping3,He Guolei12,Xu Benchong1,Chen Haowen1,Li Changping4ORCID,Yin Guoyue1,Wang Jiarui1,Wang Linqing1

Affiliation:

1. Institute of Exploration Techniques, Chinese Academy of Geological Sciences, Langfang 065000, China

2. Technology Innovation Center for Directional Drilling Engineering, Ministry of Natural Resources, Langfang 065000, China

3. Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou 511458, China

4. School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074, China

Abstract

Riserless mud-recovery (RMR) drilling technology was widely applied in recent years. Compared with traditional deepwater drilling, RMR drilling can improve drilling efficiency, reduce risks, and minimize environmental effects. This paper focuses primarily on the stability of a mud-return circulation system in an RMR system. First, various factors that affect the stability of a mud-return circulation system are analyzed. An analytical model for the skid-and-mud-return line is established. Second, relevant data are derived from theoretical calculations and experiments. ABAQUS software is used to analyze the effects of each factor on the stability of the mud-return circulation system. The influencing patterns of each factor on the stability of the mud-return circulation system are summarized. Furthermore, the stability of the system under different operating conditions is analyzed based on the coupling of multiple factors. The support vector regression with derivative significance weight analysis (SVR-DWSA) algorithm is employed to perform a weight analysis of the effect on the system’s stability. Finally, based on the research findings on the stability of the mud-return circulation system, relevant conclusions and recommendations are drawn. The results of this study provide valuable references for the application of RMR technology.

Funder

National Key Research and Development Program of China

Hi-tech Ship Project of Ministry of Industry and Information Technology

Marine Economy Development Foundation of Guangdong Province

Technical Support for Stimulation and Testing of Gas Hydrate Reservoirs

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3