IoT-Based Big Data Secure Transmission and Management over Cloud System: A Healthcare Digital Twin Scenario

Author:

Stergiou Christos L.1ORCID,Koidou Maria P.1,Psannis Konstantinos E.1ORCID

Affiliation:

1. Department of Applied Informatics, University of Macedonia, 54636 Thessaloniki, Greece

Abstract

The Internet of Things (IoT) was introduced as a recently developed technology in the telecommunications field. It is a network made up of real-world objects, things, and gadgets that are enabled by sensors and software that can communicate data with one another. Systems for monitoring gather, exchange, and process video and image data captured by sensors and cameras across a network. Furthermore, the novel concept of Digital Twin offers new opportunities so that new proposed systems can work virtually, but without differing in operation from a “real” system. This paper is a meticulous survey of the IoT and monitoring systems to illustrate how their combination will improve certain types of the Monitoring systems of Healthcare–IoT in the Cloud. To achieve this goal, we discuss the characteristics of the IoT that improve the use of the types of monitoring systems over a Multimedia Transmission System in the Cloud. The paper also discusses some technical challenges of Multimedia in IoT, based on Healthcare data. Finally, it shows how the Mobile Cloud Computing (MCC) technology, settled as base technology, enhances the functionality of the IoT and has an impact on various types of monitoring technology, and also it proposes an algorithm approach to transmitting and processing video/image data through a Cloud-based Monitoring system. To gather pertinent data about the validity of our proposal in a more safe and useful way, we have implemented our proposal in a Digital Twin scenario of a Smart Healthcare system. The operation of the suggested scenario as a Digital Twin scenario offers a more sustainable and energy-efficient system and experimental findings ultimately demonstrate that the proposed system is more reliable and secure. Experimental results show the impact of our proposed model depicts the efficiency of the usage of a Cloud Management System operated over a Digital Twin scenario, using real-time large-scale data produced from the connected IoT system. Through these scenarios, we can observe that our proposal remains the best choice regardless of the time difference or energy load.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A systematic review of Digital Twins in efficient pandemic management with challenges and emerging trends;Decision Analytics Journal;2024-09

2. Self-Adaptable Software for Pre-Programmed Internet Tasks: Enhancing Reliability and Efficiency;Applied Sciences;2024-08-05

3. A Vital-Signs Monitoring Wristband With Real-Time In-Sensor Data Analysis Using Very Low-Hardware Resources;IEEE Sensors Journal;2024-06-01

4. Secure Patient Healthcare Monitoring System with IoT and Body Sensor Network;2024 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI);2024-05-09

5. Enhancing Cybersecurity for Diabetes Patient Data in Cloud-Based IoT Using Advanced Machine Learning Algorithms;2023 International Conference on Artificial Intelligence for Innovations in Healthcare Industries (ICAIIHI);2023-12-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3