Design and Optimization of the Bi-Directional U-Ribbed Stiffening Plate–Concrete Composite Bridge Deck Structure

Author:

Wei Dingchao1,Liao Jingwen2,Liu Jianjun1,Gao Yingjie2,Huang Fanglin2ORCID

Affiliation:

1. Guizhou Transportation Planning Survey & Design Academe Co., Ltd., Guiyang 550081, China

2. School of Civil Engineering, Central South University, Changsha 410075, China

Abstract

The steel–concrete composite structure is widely used in civil engineering for large-span bridges. Orthotropic steel bridge decks (OSDs) have particularly gained popularity due to their excellent mechanical performance. To address cracking issues in OSDs and concrete in negative moment regions, a novel bi-directional U-ribbed stiffening plate (BUSP)–concrete composite bridge deck is proposed. By using finite element analysis, the mechanical performance is evaluated based on maximum tensile stress and vertical displacement of concrete overlays. Results show that the BUSP–concrete deck outperformed conventional flat decks. It is also found that increasing the height, thickness, and opening width of U-ribs reduced tensile stress and maximum displacement. Adjusting height had the most significant effect on displacement while opening width affected tensile stress the most. Considering material usage, optimizing height is proved to be more effective than adjusting thickness and opening width. Decreasing spacing parameters improved performance but added complexity and reduced construction convenience. These findings will guide the design and optimization of steel–concrete composite bridge deck structures.

Funder

Guizhou Transportation Planning Survey & Design Academe

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3