Abstract
Air jet impingement systems have proven to be a very efficient way of heat transfer in single phase flows, which has allowed them to be applied in several industries. However, the complexity of the physical phenomena that take place in the cooling or heating processes makes the task of designing and sizing a system of this type very difficult. The objective of this work is to develop a methodology for the optimization of the impingement plate for electronic components cooling systems. The component chosen to exemplify this work is an insulated gate bipolar transistor (IGBT) such as those employed in photovoltaic inverters. The proposed methodology is divided into the thermo-hydraulic calculation process and the optimization of the system. This optimization is carried out using a multi-objective particle swarm optimization (PSO) algorithm that seeks the best compromise between two variables: Component temperature and manufacturing time of the impingement plate. The result is a calculation tool that can quickly find the solution that meets the requirements of the designer without the need to evaluate all possible solutions.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference51 articles.
1. The need for a change in thermal design philosophy;Lasance;Electron. Cooling,1995
2. Thermal Management for the 21st Century—Improved Thermal Control and Fuel Economy in an Army Medium Tactical Vehicle;Page,2005
3. Advances in Integrated Vehicle Thermal Management and Numerical Simulation
4. Design of Parallel Air-Cooled Battery Thermal Management System through Numerical Study
5. The International Roadmap for Devices and Systems
https://irds.ieee.org/images/files/pdf/2017/2017IRDS_ES.pdf
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献