Life Cycle Assessment of a Biogas-Fed Solid Oxide Fuel Cell (SOFC) Integrated in a Wastewater Treatment Plant

Author:

Gandiglio MartaORCID,De Sario Fabrizio,Lanzini Andrea,Bobba SilviaORCID,Santarelli Massimo,Blengini Gian Andrea

Abstract

This work assesses the environmental impacts of an industrial-scale Solid Oxide Fuel Cell (SOFC) plant fed by sewage biogas locally available from a Waste Water Treatment Plant (WWTP). Three alternative scenarios for biogas exploitation have been investigated and real data from an existing integrated SOFC-WWTP have been retrieved: the first one (Scenario 1) is the current scenario, where biogas is exploited in a boiler for thermal-energy-only production, while the second one is related to the installation of an efficient SOFC-based cogeneration system (Scenario 2). A thermal energy conservation opportunity that foresees the use of a dynamic machine for sludge pre-thickening enhancement is also investigated as a third scenario (Scenario 3). The life cycle impact assessment (LCIA) has shown that producing a substantial share of electrical energy (around 25%) via biogas-fed SOFC cogeneration modules can reduce the environmental burden associated to WWTP operations in five out of the seven impact categories that have been analyzed in this work. A further reduction of impacts, particularly concerning global warming potential and primary energy demand, is possible by the decrease of the thermal request of the digester, thus making the system independent from natural gas. In both Scenarios 2 and 3, primary energy and CO2 emissions embodied in the manufacture and maintenance of the cogeneration system are neutralized by operational savings in less than one year.

Funder

Fuel Cells and Hydrogen Joint Undertaking

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3