Abstract
We compare the 24-hour ahead forecasting performance of two methods commonly used for the prediction of the power output of photovoltaic systems. Both methods are based on Artificial Neural Networks (ANN), which have been trained on the same dataset, thus enabling a much-needed homogeneous comparison currently lacking in the available literature. The dataset consists of an hourly series of simultaneous climatic and PV system parameters covering an entire year, and has been clustered to distinguish sunny from cloudy days and separately train the ANN. One forecasting method feeds only on the available dataset, while the other is a hybrid method as it relies upon the daily weather forecast. For sunny days, the first method shows a very good and stable prediction performance, with an almost constant Normalized Mean Absolute Error, NMAE%, in all cases (1% < NMAE% < 2%); the hybrid method shows an even better performance (NMAE% < 1%) for two of the days considered in this analysis, but overall a less stable performance (NMAE% > 2% and up to 5.3% for all the other cases). For cloudy days, the forecasting performance of both methods typically drops; the performance is rather stable for the method that does not use weather forecasts, while for the hybrid method it varies significantly for the days considered in the analysis.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference55 articles.
1. Executive Summary of the World Energy Investment, 2018
https://webstore.iea.org/world-energy-investment-2018
2. Global Warming of 1.5. 2018
https://www.ipcc.ch/sr15/
3. The driving factors of air quality index in China
4. Forecasting the Dynamics of the Depletion of Conventional Energy Resources
Cited by
137 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献