Fault Isolability Analysis and Optimal Sensor Placement for Fault Diagnosis in Smart Buildings

Author:

Trothe Max Emil S.,Shaker Hamid RezaORCID,Jradi MuhyiddineORCID,Arendt Krzysztof

Abstract

Faults and anomalies in buildings are among the main causes of building energy waste and occupant discomfort. An effective automatic fault detection and diagnosis (FDD) process in buildings can therefore save a significant amount of energy and improve the comfort level. Fault diagnosability analysis and an optimal FDD-oriented sensor placement are prerequisites for effective, efficient and successful diagnostics. This paper addresses the problem of fault diagnosability for smart buildings. The method used in the paper is a model-based technique which uses Dulmage-Mendelsohn decomposition. To the best of our knowledge, this is the first time that this method is used for applications in smart buildings. First a dynamic model for a zone in a real-case building is developed in which faults are also introduced. Then fault diagnosability is investigated by analyzing the fault isolability of the model. Based on the investigation, it was concluded that not all the faults in the model are diagnosable. Then an approach for placing new sensors is implemented. It is observed that for two test scenarios, placing additional sensors in the model leads to full diagnosability. Since sensors placement is key for an effective FDD process, the optimal placement of such sensors is also studied in this work. A case study of campus building OU44 at the University of Southern Denmark is considered. The results show that as the system gets more complicated by introducing more faults, additional sensors should be added to achieve full diagnosability.

Funder

Innovationsfonden

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference22 articles.

1. Building Energy Consumption in the EU https://ec.europa.eu/energy/en/topics/energy-efficiency/buildings

2. Energy consumption and efficiency in buildings: current status and future trends

3. The smart thermostat

4. A review on buildings energy consumption information;Pérez-Lombard;Energy Build.,2008

5. Computer-Aided Evaluation of HVAC System Performance http://www.iea-ebc.org/Data/publications/EBC_Annex_34_tsr.pdf

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3