Optimization of the Energy Consumption of a Carbon Capture and Sequestration Related Carbon Dioxide Compression Processes

Author:

Jackson StevenORCID,Brodal Eivind

Abstract

It is likely that the future availability of energy from fossil fuels, such as natural gas, will be influenced by how efficiently the associated CO2 emissions can be mitigated using carbon capture and sequestration (CCS). In turn, understanding how CCS affects the efficient recovery of energy from fossil fuel reserves in different parts of the world requires data on how the performance of each part of a particular CCS scheme is affected by both technology specific parameters and location specific parameters, such as ambient temperature. This paper presents a study into how the energy consumption of an important element of all CCS schemes, the CO2 compression process, varies with compressor design, CO2 pipeline pressure, and cooling temperature. Post-combustion, pre-combustion, and oxyfuel capture scenarios are each considered. A range of optimization algorithms are used to ensure a consistent approach to optimization. The results show that energy consumption is minimized by compressor designs with multiple impellers per stage and carefully optimized stage pressure ratios. The results also form a performance map illustrating the energy consumption for CO2 compression processes that can be used in further study work and, in particular, CCS system models developed to study performance variation with ambient temperature.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference22 articles.

1. Addressing Technology Uncertainties in Power Plants with Post-Combustion Capture

2. Gas conditioning—The interface between CO2 capture and transport;Jordal;Int. J. Greenh. Gas Control.,2007

3. Integrally-geared compressors as state-of-the-art technology;Dittmer;Carbon Capture J.,2015

4. Innovative and proven CO2 compression technology for CCS and EOR;Habel;Carbon Capture J.,2009

5. Global Costs of Carbon Capture and Storage, 2017 Update;Irlam,2017

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3