Comparison of Pyrolysis and Combustion Processes of Vinyl Floor Panels Using Thermogravimetric Analysis (TG-FTIR) in Terms of the Circular Economy

Author:

Kajda-Szcześniak MałgorzataORCID,Czop MonikaORCID

Abstract

The article analyzes the thermal degradation in the inert and oxidative atmosphere of waste vinyl panels, the main component of which is PVC. Both pyrolysis and incineration of plastic waste are difficult, complex and multifaceted processes due to several physical and chemical phenomena occurring during their performance. The coupled TG-MS (thermogravimetry-mass spectrometry) analysis combined with the Fourier transform infrared spectrometry (TG-FTIR) analysis was used to identify the decomposition mechanisms of waste vinyl panels. Thermogravimetric tests were carried out for two heating rates of 5 and 20 K/min in the temperature range of 40–1000 °C, mass losses were determined, and products resulting from thermal degradation were identified. It was found that the individual components decompose at different temperatures depending on the heating rate and the choice of an inert or oxidative atmosphere. Vinyl floor panels were treated in terms of secondary raw material, which, in the light of the circular economy, may constitute a potential energy or chemical resource.

Funder

Silesian University of Technology

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3