Measuring and Modelling Soil Evaporation in an Irrigated Olive Orchard to Improve Water Management

Author:

Tezza Luca,Häusler MelanieORCID,Conceição Nuno,Ferreira Maria IsabelORCID

Abstract

The aim of this study was to estimate soil evaporation (Es) in an intensive olive orchard. Measurements of Es were performed for 19 days using microlysimeters, during summers 2010, 2011 and 2012 in southeast Portugal. In order to relate each area type to radiation transmissivity, ground cover measurements were performed over the years. These data were used to calibrate and validate an empirical model for Es estimation. Measured daily average Es was 0.55 ± 0.14 mm; the model estimated 0.53 ± 0.18 mm for the same days, with a determination coefficient of 0.94. This corresponds to 9% of the reference evapotranspiration, representing well the overall values estimated for the summer, except for days after rain. Regarding the wet area, measured Es for the validation data set was 2.42 L/(m2 of wet area), the estimated was 2.49 L/(m2 of wet area). Measured average Es in dry area (validation data set) was 0.42 L/(m2 of dry area), estimated Es was 0.43 L/(m2 of dry area). The large exposed dry area had a significant contribution to evaporation. On average, estimated Es during a typical Mediterranean summer was 10% of reference evapotranspiration, representing 30% of transpiration and 23% of evapotranspiration.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference44 articles.

1. Problématique et perspectives de l’efficience d’utilisation de l’eau agricole au Maghreb;Zeggaf,2010

2. Regional action program on “water resources management”: An overview of actions towards better water use in mediterranean agriculture;Lacirignola,2003

3. EVAPORATION, AND MOISTURE AND HEAT FIELDS IN THE SOIL

4. Model for predicting evaporation from a row crop with incomplete cover

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3