Abstract
In this paper, we present an aircraft localization solution developed in the context of the Aircraft Localization Competition and applied to the OpenSky Network real-world ADS-B data. The developed solution is based on a combination of machine learning and multilateration using data provided by time synchronized ground receivers. A gradient boosting regression technique is used to obtain an estimate of the geometric altitude of the aircraft, as well as a first guess of the 2D aircraft position. Then, a triplet-wise and an all-in-view multilateration technique are implemented to obtain an accurate estimate of the aircraft latitude and longitude. A sensitivity analysis of the accuracy as a function of the number of receivers is conducted and used to optimize the proposed solution. The obtained predictions have an accuracy below 25 m for the 2D root mean squared error and below 35 m for the geometric altitude.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献