Development of a Feedback System to Control Power in Cycling

Author:

Mayerhofer Patrick,Jensen Matt,Clarke David C.,Wakeling James,Donelan Max

Abstract

Here we seek to control mechanical power output in outdoor cycling by adjusting commanded cadence of a cyclist. To understand cyclist’s dynamic behavior, we had one participant match their cadence to a range of commanded cadences. We then developed a mathematical model that predicts the actual mechanical power as a function of commanded cadence. The average absolute error between the predicted power of our model and the actual power was 15.9 ± 11.7%. We used this model to simulate our closed-loop controller and optimize for proportional and integral controller gains. With these gains in outdoor cycling experiments, the average absolute error between the target and the actual power was 3.2 ± 1.2% and the average variability in power was 2.9 ± 1.3%. The average responsiveness, defined as the required time for the actual power to reach 95% of the target power following changes in target power, was 7.4 ± 2.0 s.

Publisher

MDPI AG

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Euler's Formula-Based Research on the Dynamics of Cycling Competition;Highlights in Science, Engineering and Technology;2023-08-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3