Design and Optimization of a Low-Resonant-Frequency Piezoelectric MEMS Energy Harvester Based on Artificial Intelligence

Author:

Nabavi SeyedfakhreddinORCID,Zhang Lihong

Abstract

In this study we propose a piezoelectric MEMS vibration energy harvester with the capability of oscillating at low (i.e., less than 200 Hz) resonant frequency. The mechanical structure of the proposed harvester is comprised of a doubly clamped cantilever with a serpentine pattern associated with several discrete masses. In order to obtain the optimal physical aspects of the harvester and speed up the design process, we have utilized a deep neural network, as an artificial intelligence (AI) method. Firstly, the deep neural network was trained with 108 data samples gained from finite element modeling (FEM). Then this trained network was integrated with the genetic algorithm (GA) to optimize geometry of the harvester to enhance its performance in terms of resonant frequency and generated voltage. Our numerical results confirm that the accuracy of the network in prediction is above 90%. Consequently, by taking advantage of this efficient AI-based performance estimator, the GA is able to reduce the device operational frequency from 169 Hz to 110.5 Hz and increase its efficiency on harvested voltage from 2.5 V to 3.4 V under 0.25 g excitation.

Publisher

MDPI AG

Subject

General Medicine

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Novel Four legged linear piezoelectric inchworm motor with high thrust force;Microsystem Technologies;2024-07-13

2. A Low-Frequency High-Performance Harvesting System With Combined Cantilever Beam;IEEE Sensors Journal;2024-06-15

3. Reinforcement-Learning-Based Successive Approximation Algorithm;2024 IEEE International Symposium on Circuits and Systems (ISCAS);2024-05-19

4. State of the Art on Power Conditioning for Piezoelectric Energy Harvesters;IEEE Transactions on Power Electronics;2024-03

5. Zero-Power MEMS Resonant Mass Sensor Inspired by Piezoelectric Vibration Energy Harvesting;2023 IEEE Sensors Applications Symposium (SAS);2023-07-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3