Predicting Health Care Costs Using Evidence Regression

Author:

Panay BelisarioORCID,Baloian NelsonORCID,Pino José,Peñafiel Sergio,Sanson Horacio,Bersano Nicolas

Abstract

People’s health care cost prediction is nowadays a valuable tool to improve accountability in health care. In this work, we study if an interpretable method can reach the performance of black-box methods for the problem of predicting health care costs. We present an interpretable regression method based on the Dempster-Shafer theory, using the Evidence Regression model and a discount function based on the contribution of each dimension. Optimal parameters are learned using gradient descent. The k-nearest neighbors’ algorithm was also used to speed up computations. With the transparency of the evidence regression model, it is possible to create a set of rules based on a patient’s vicinity. When making a prediction, the model gives a set of rules for such a result. We used Japanese health records from Tsuyama Chuo Hospital to test our method, which includes medical checkups, exam results, and billing information from 2016 to 2017. We compared our model to an Artificial Neural Network and Gradient Boosting method. Our results showed that our transparent model outperforms the Artificial Neural Network and Gradient Boosting with an R 2 of 0 . 44 .

Publisher

MDPI AG

Subject

General Medicine

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Medical Insurance Cost Prediction;Indian Journal of Data Communication and Networking;2024-06-30

2. An Accurate Prediction of Medical Insurance Cost Using Forest Regression Algorithms;2023 International Conference on Data Science, Agents & Artificial Intelligence (ICDSAAI);2023-12-21

3. Insurance Claim Analysis Using Traditional Machine Learning Algorithms;2023 International Conference on Disruptive Technologies (ICDT);2023-05-11

4. Medical Insurance Cost Analysis and Prediction using Machine Learning;2023 International Conference on Innovative Data Communication Technologies and Application (ICIDCA);2023-03-14

5. Health Insurance Amount Prediction Using Supervised Learning;2022 2nd International Conference on Technological Advancements in Computational Sciences (ICTACS);2022-10-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3