Affiliation:
1. College of Agronomy, Liaocheng University, Liaocheng 252000, China
2. College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China
Abstract
Mucor hiemalis BO-1 is an entomopathogenic fungus that infects Bradysia odoriphaga, a destructive root maggot. M. hiemalis BO-1 possesses stronger pathogenicity to the larvae than to other stages of B. odoriphaga, and provides satisfactory field control. However, the physiological response of B. odoriphaga larvae to infection and the infection mechanism of M. hiemalis are unknown. We detected some physiological indicators of diseased B. odoriphaga larvae infected by M. hiemalis BO-1. These included changes in consumption, nutrient contents, and digestive and antioxidant enzymes. We performed transcriptome analysis of diseased B. odoriphaga larvae, and found that M. hiemalis BO-1 showed acute toxicity to B. odoriphaga larvae and was as toxic as some chemical pesticides. The food consumption of diseased B. odoriphaga after inoculation with M. hiemalis spores decreased significantly, and there was a significant decrease in total protein, lipid, and carbohydrates in diseased larvae. Key digestive enzymes (protease, α-amylase, lipase, and cellulase) were significantly inhibited during infection. Peroxidase maintained high activity, and the activity of other antioxidant enzymes (catalase, superoxide dismutase, and glutathione S-transferases) first increased and then decreased. Combined with the transcriptional signatures of diseased B. odoriphaga larvae, M. hiemalis BO-1 infection resulted in decreased food consumption, reduced digestive enzyme activity, and altered energy metabolism and material accumulation. Infection was also accompanied by fluctuations in immune function, such as cytochrome P450 and the Toll pathway. Therefore, our results laid a basis for the further study of the interactions between M. hiemalis BO-1 and B. odoriphaga and promoted the genetic improvement of entomopathogenic fungi.
Funder
Shandong provincial Natural Science Foundation
Chinese University Student Innovation Project
National Natural Science Foundation of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献