Flight and Reproduction Variations of Rice Leaf Roller, Cnaphalocrocis medinalis in Response to Different Rearing Temperatures

Author:

Lv WeixiangORCID,Jiang Xingfu,Chen Xiujie,Cheng Yunxia,Xia Jixing,Zhang Lei

Abstract

Understanding how species that follow different life-history strategies respond to stressful temperature can be essential for efficient treatments of agricultural pests. Here, we focused on how the development, reproduction, flight, and reproductive consequences of migration of Cnaphalocrocis medinalis were influenced by exposure to different rearing temperatures in the immature stage. We found that the immature rice leaf roller that were reared at low temperatures (18 and 22 °C) developed more slowly than the normal temperature 26 °C, while those reared at high temperatures (34 °C) grew faster. Female adults from low immature stage rearing temperatures showed stronger reproductive ability than those at 26 and 34 °C, such as the preoviposition period (POP) significantly decreased, while the total lifetime fecundity obviously increased. However, 34 °C did not significantly reduce the reproductive performances of females compared to 26 °C. On the contrary, one relative decreased tendency of flight capacity was found in the lower immature temperature treatments. Furthermore, flight is a costly strategy for reproduction output to compete for limited internal resources. In the lower temperature treatments, after d1-tethered flight treatment, negative reproductive consequences were found that flight significantly decreased the lifetime fecundity and mating frequency of females from low rearing temperatures in the immature stage compared to the controls (no tethered-flight). However, in the 26 and 34 °C treatments, the same flight treatment induced a positive influence on reproduction, which significantly reduced the POP and period of first oviposition (PFO). The results suggest that the experience of relative high temperatures in the immature stage is more likely to trigger the onset of migration, but lower temperatures in the immature stage may induce adults to have a greater resident propensity with stronger reproductive ability.

Funder

the National Natural Science of China

Publisher

MDPI AG

Subject

Insect Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3