Evaluation of Mosquito Attractant Candidates Using a High-Throughput Screening System for Aedes aegypti (L.), Culex quinquefasciatus Say. and Anopheles minimus Theobald (Diptera: Culicidae)

Author:

Kim Dae-YunORCID,Leepasert Theerachart,Bangs Michael J.,Chareonviriyaphap Theeraphap

Abstract

Several types of olfactometers have been used to evaluate mosquito responses to agents that mimic natural volatiles that repel or attract. The Y-tube olfactometer has been widely used to study repellents and attractants, while the high-throughput screening system assay has only been used to study repellents. Whether the high-throughput screening system assay is suitable for evaluating attractants is unknown. We evaluated the responses to four lactic-acid-based mixtures and two non-lactic-acid-based chemical lure candidates using the high-throughput screening system (HITSS) for three mosquito species (laboratory strains and field populations of both Aedes aegypti (L.) and Culex quinquefasciatus Say.; laboratory strain of Anopheles minimus Theobald) under laboratory-controlled conditions. HITSS assay results showed that KU-lure #1 elicited the greatest percent attraction for pyrethroid-resistant and -susceptible Ae. aegypti. KU-lure #6 elicited the strongest attractive response for pyrethroid-susceptible and -resistant Cx. quinquefasciatus and pyrethroid-susceptible An. minimus. The response to the lures from each species was independent of the pyrethroid susceptibility status (Ae. aegypti, p = 0.825; Cx. quinquefasciatus, p = 0.056). However, a significant difference in attraction to KU-lure #6 was observed between diurnal and nocturnal mosquitoes (Cx. quinquefasciatus vs. Ae. aegypti, p = 0.014; An. minimus vs. Ae. aegypti, p = 0.001). The laboratory-level HITSS assay effectively selects potential lure candidates. Because the host-seeking behavior differs between mosquito species, further studies are needed to develop species-specific attractants. Additional studies in semi-field screen houses using commercial traps are necessary to evaluate the accuracy of these laboratory assay results.

Funder

Thailand Research Fund

Kasetsart University Research and Development Institute

Graduate School of Kasetsart University

Publisher

MDPI AG

Subject

Insect Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3