Target Enzymes of Origanum majorana and Rosmarinus officinalis Essential Oils in Black Cutworm (Agrotis ipsilon): In Vitro and In Silico Studies

Author:

Ahmed Fatma S.1ORCID,Helmy Walid S.1ORCID,Alfuhaid Nawal Abdulaziz2,Moustafa Moataz A. M.1ORCID

Affiliation:

1. Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza 12613, Egypt

2. Department of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia

Abstract

In this study, in vitro and in silico approaches were employed to assess the toxicity of marjoram (Origanum majorana) and rosemary (Rosmarinus officinalis) essential oils (EOs) to A. ipsilon larvae. The study determined the activities of ATPases in the larvae after treatment with the LC20 and LC70 of each EO. α-esterase and glutathione-S-transferase (GST) activities were also determined after treatment with LC10 and LC30 of each EO. Furthermore, molecular docking was employed to determine the binding affinity of terpinene-4-ol and α-pinene, the major constituents of O. majorana, and R. officinalis EOs, respectively, compared to the co-crystallized ligand of α-esterase, diethyl hydrogen phosphate (DPF). Toxicity assays revealed that O. majorana EO was more toxic than R. officinalis EO to the A. ipsilon larvae at 96 h post-treatment. However, the LC20 and LC70 of the latter significantly inhibited the activity of the Na+-K+ pump at almost all intervals. The same concentrations significantly inhibited the Mg2+/Ca2+-ATPase and Ca2+ pump at 96 h post-treatment. In contrast, O. majorana EO showed a variable effect on the Na+-K+ pump across different time intervals. On the other hand, LC10 and LC30 of both EOs showed varied effects on α-esterase and GST over time. Molecular docking revealed energy scores of −4.51 and −4.29 kcal/mol for terpinene-4-ol and α-pinene, respectively, compared to a score of −4.67 for PDF. Our study demonstrated the toxicity of the tested EOs to A. ipsilon, suggesting their potential efficacy as insecticides.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3