KASP Genotyping as a Molecular Tool for Diagnosis of Cassava-Colonizing Bemisia tabaci

Author:

Wosula Everlyne N.ORCID,Chen Wenbo,Amour Massoud,Fei ZhangjunORCID,Legg James P.ORCID

Abstract

Bemisia tabaci is a cryptic species complex that requires the use of molecular tools for identification. The most widely used approach for achieving this is the partial sequencing of the mitochondrial DNA cytochrome oxidase I gene (COI). A more reliable single nucleotide polymorphism (SNP)-based genotyping approach, using Nextera restriction-site-associated DNA (NextRAD) sequencing, has demonstrated the existence of six major haplogroups of B. tabaci on cassava in Africa. However, NextRAD sequencing is costly and time-consuming. We, therefore, developed a cheaper and more rapid diagnostic using the Kompetitive Allele-Specific PCR (KASP) approach. Seven sets of primers were designed to distinguish the six B. tabaci haplogroups based on the NextRAD data. Out of the 152 whitefly samples that were tested using these primer sets, 151 (99.3%) produced genotyping results consistent with NextRAD. The KASP assay was designed using NextRAD data on whiteflies from cassava in 18 countries across sub-Saharan Africa. This assay can, therefore, be routinely used to rapidly diagnose cassava B. tabaci by laboratories that are researching or monitoring this pest in Africa. This is the first study to develop an SNP-based assay to distinguish B. tabaci whiteflies on cassava in Africa, and the first application of the KASP technique for insect identification.

Funder

U.S. Department of Agriculture

Publisher

MDPI AG

Subject

Insect Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3