Fungicides Reduce the Abundance of Yeast-like Symbionts and Survival of White-Backed Planthopper Sogatella furcifera (Homoptera: Delphacidae)

Author:

Pang KunORCID,Dong ShengzhangORCID,Hao Peiying,Chen Tongtong,Wang Xinlong,Yu Xiaoping,Lin Huafeng

Abstract

The white-backed planthopper (WBPH) Sogatella furcifera is one of the most harmful pests of rice in Southeast Asia. The fat body of WBPH harbors intracellular yeast-like symbionts (YLS). YLS are vertically transmitted to WBPH offspring by transovarial infection. YLS play an important role in the WBPH life cycle. YLS diversity and function have been extensively studied in the brown planthopper (BPH) and small brown planthopper but not in WBPH, even though a novel strategy for controlling the BPH based on suppressing YLS has been proposed. Here, using denaturing gradient gel electrophoresis, we identified 12 unique fungal sequences among YLS of WBPH, and five of them represented uncultured fungi. We then fed WBPH with rice plants treated with different fungicides [70% propineb wettable powder (WP) (PR), 70% propamocarb hydrochloride aqueous solution (AS) (PH), 25% trifloxystrobin and 50% tebuconazole water-dispersible granules (WG) (TT), 40% pyrimethanil suspension concentrate (SC) (PY), and 50% iprodione SC (IP)] and evaluated their effects on YLS abundance and WBPH survival rate. Both YLS abundance and adult WBPH survival rate were significantly decreased upon feeding fungicide-treated rice plants, and exposure to 50% IP resulted in the strongest reduction. The abundance of two Sf-YLS species (Ascomycetes symbiotes and Cla-like symbiotes) was significantly reduced upon exposure to 50% IP. The counts of Ascomycetes symbiotes, the most abundant YLS species, were also suppressed by the other fungicides tested. In conclusion, 50% IP was the most effective fungicide, reducing YLS abundance and WBPH survival rate under controlled conditions, suggesting its potential use to control WBPH.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Insect Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3