Biocontrol of Xyleborus affinis (Curculionidae: Scolitinae) Females and Progeny by Beauveria bassiana (Hypocreales: Cordycipitaceae) in a Sawdust Artificial Diet Model

Author:

Castrejón-Antonio Jesús E.1,Tamez-Guerra Patricia2ORCID,García-Ortiz Nohemi3,Muñiz-Paredes Facundo3ORCID,Sánchez-Rangel Juan Carlos1,Montesinos-Matías Roberto3ORCID

Affiliation:

1. Facultad de Ciencias Biológicas y Agropecuarias, Universidad de Colima, Autopista Colima-Manzanillo km 40, La Estación, Tecomán C.P. 28930, Colima, Mexico

2. Facultad de Ciencias Biológicas, Departamento de Microbiología e Inmunología, Universidad Autónoma de Nuevo León, Av. Pedro de Alba S/N, Cd. Universitaria, San Nicolás de los Garza C.P. 66455, Nuevo León, Mexico

3. Centro Nacional de Referencia de Control Biológico, km 1.5, Carretera Tecomán-Estación FFCC, Col. Tepeyac, Tecomán C.P. 28110, Colima, Mexico

Abstract

The ambrosia beetle Xyleborus affinis, recently reported affecting avocado trees in Mexico, represents one of the most widespread insects worldwide. Previous reports have shown that Xyleborus genera members are susceptible to Beauveria bassiana and other entomopathogenic fungus strains. However, their effect on borer beetles’ progeny has not been fully investigated. The aim of the present study was to determine the insecticidal activity of B. bassiana on X. affinis adult females and their progeny in an artificial sawdust diet bioassay model. The B. bassiana strains CHE-CNRCB 44, 171, 431, and 485 were individually tested on females at concentrations ranging from 2 × 106 to 1 × 109 conidia mL−1. After 10 d of incubation, diet was evaluated to count laid eggs, larvae, and adults. Insect conidia loss after exposure was determined by attached conidia to each insect after 12 h of exposure. The results showed that females’ mortality ranged between 3.4% and 50.3% in a concentration–response manner. Furthermore, we did not observe statistical differences among strains at the highest concentration. CHE-CNRCB 44 showed the highest mortality at the lowest concentration and reduced larvae and laid eggs at the highest concentration (p < 0.01). Strains CHE-CNRCB 44, 431, and 485 significantly decreased larvae, as compared with the untreated control. After 12 h, up to 70% of conidia was removed by the effect of the artificial diet. In conclusion, B. bassiana has the potential to control X. affinis adult females and progeny.

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

MDPI AG

Subject

Insect Science

Reference53 articles.

1. Vega, F.E., and Hofstetter, R.W. (2014). Bark Beetles: Biology and Ecology of Native and Invasive Species, Academic Press.

2. The complex symbiotic relationships of bark beetles with microorganisms: A potential practical approach for biological control in forestry;Popa;Pest Manag. Sci.,2012

3. Vega, F.E., and Hofstetter, R.W. (2015). Bark Beetles: Biology and Ecology of Native and Invasive Species, Academic Press.

4. Peña, J. (2013). Potencial Invasive Pest of Agricultural Crops, CAB International.

5. Recovery plan for laurel wilt on redbay and other forest species caused by Raffaelea lauricola and disseminated by Xyleborus glabratus;Hughes;Plant Health Progr.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3