Abstract
Rift Valley fever (RVF) is a major viral zoonosis transmitted by mosquitoes. The virus is endemic in most parts of sub-Saharan Africa and can affect humans, livestock, and wild ungulates. Knowledge of the biology of vectors of Rift Valley fever virus (RVFV) is essential for the establishment of effective control measures of the disease. The objective of this study was to determine the species diversity and relative abundance of potential RVFV vectors in the North Region of Cameroon. Adult mosquitoes were trapped during the wet and dry seasons from December 2017 to January 2019 with “EVS Light” traps with CO2 baits placed at selected sites. The captured mosquitoes were identified using dichotomous keys according to standard procedures. The abundance was calculated with regard to site, zone, and collection season. A total of 27,851 mosquitoes belonging to four genera (Aedes, Anopheles, Mansonia, and Culex) and comprising 31 species were caught (including 22 secondary vectors (98.05%) and nine primary vectors (1.94%). The total number of mosquitoes varied significantly depending on the locality (p-value < 0.001). The average number of mosquitoes collected per trap night was significantly higher in irrigated areas (p-value < 0.001), compared to urban and non-irrigated areas. The study revealed the presence of potential primary and secondary vectors of RVFV with varying abundance and diversity according to locality and ecological site in the North Region of Cameroon. The results showed that the genus Mansonia with the species Ma. uniformis and Ma. africana formed the dominant taxon (52.33%), followed by the genera Culex (45.04%) and Anopheles (2.61%). The need for molecular analysis (PCR) tests for RVFV RNA research and viral isolation methods on these vectors to determine their role in the epidemiology and control of RVF cannot be overemphasized.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献