Nematode and Strepsipteran Parasitism in Bait-Trapped and Hand-Collected Hornets (Hymenoptera, Vespidae, Vespa)

Author:

Kanzaki Natsumi1ORCID,Makino Shun’ichi2,Kosaka Hajime3ORCID,Sayama Katsuhiko4,Hamaguchi Keiko1,Narayama Shinji1

Affiliation:

1. Kansai Research Center, Forestry and Forest Products Research Institute (FFPRI), 68 Nagaikyutaroh, Momoyama, Fushimi, Kyoto 612-0855, Japan

2. Department of Forest Entomology, Forestry and Forest Products Research Institute, 1 Matsunosato, Tsukuba, Ibaraki 305-8687, Japan

3. Department of Mushroom Science and Forest Microbiology, FFPRI, 1 Matsunosato, Tsukuba, Ibaraki 305-8687, Japan

4. Kyushu Research Center, Forestry and Forest Products Research Institute, 4-11-16 Kurokami, Chuo, Kumamoto 860-0862, Japan

Abstract

The parasitism of two groups of host-manipulating parasites of hornets was examined in Kyoto, Japan. Vespa mandarinia (661 individuals), V. simillima (303), V. analis (457), V. ducalis (158), V. crabro (57), and V. dybowskii (4) were collected either by bait trap or hand collection with an insect net, and examined for their parasites. An endoparasitic nematode, Sphaerularia vespae was isolated from three overwintered gynes of V. mandarinia and a gyne of V. ducalis. While endoparasitic insects, Xenos spp., were recovered from 13 V. mandarinia, 77 V. analis, two V. ducalis, and three V. crabro, and those recovered from V. analis and others were molecularly identified as X. oxyodontes and X. moutoni, respectively. Comparing Xenos parasitism level and capturing methods, the parasitism level was significantly higher in trapped hosts than in hand-collected ones, suggesting that stylopized hosts are more strongly attracted to the food source (bait trap) compared with unparasitized hosts. The genotypes of S. vespae were identical to each other, and near identical to its type population. While each of the two Xenos spp. showed four mitochondrial DNA haplotypes. A phylogenetic comparison suggested that Xenos haplotypes found in the present study are close to those previously reported from Japan and other Asian countries.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Insect Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3