Author:
Li Gang,Zhang Xiao,Qian Heying,Liu Mingzhu,Zhao Guodong,Xu Anying
Abstract
Fluoride tolerance is an important economic trait in sericulture, especially in some industrial development regions. Analyses of physiological changes involving structural damage to the insect body and molecular analyses of some related genes have focused on this area; however, the changes that occur at the metabolic level of silkworms after eating fluoride-contaminated mulberry leaves remain unclear. Here, metabonomic analysis was conducted using gas chromatography-mass spectrometry (GC-MS) to analyze the changes in midgut tissue after NaF stress using silkworm strains 733xin (susceptible stain) and T6 (strain resistant to fluoride), which were previously reported by our laboratory. Differential metabolomics analysis showed that both T6 and 733xin strains displayed complex responses after exposure to 200 mg/kg NaF. The purine metabolism and arginine and proline metabolic pathways of fluoride-tolerant strains reached significant levels, among which 3′-adenylic acid and hypoxanthine were significantly upregulated, whereas guanine, allantoic acid, xanthine, N-acetyl-L-glutamic acid, and pyruvate were significantly downregulated. These metabolic pathways may be related to the fluoride tolerance mechanism of NaF poisoning and tolerant strains.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献