Heterocyclic Amine-Induced Feeding Deterrence and Antennal Response of Honey Bees

Author:

Larson Nicholas R.ORCID,O’Neal Scott T.ORCID,Kuhar Thomas P.,Bernier Ulrich R.,Bloomquist Jeffrey R.ORCID,Anderson Troy D.ORCID

Abstract

The productivity and survival of managed honey bee colonies is negatively impacted by a diverse array of interacting factors, including exposure to agrochemicals, such as pesticides. This study investigated the use of volatile heterocyclic amine (HCA) compounds as potential short-term repellents that could be employed as feeding deterrents to reduce the exposure of bees to pesticide-treated plants. Parent and substituted HCAs were screened for efficacy relative to the repellent N,N-diethyl-meta-toluamide (DEET) in laboratory and field experiments. Additionally, electroantennogram (EAG) recordings were conducted to determine the level of antennal response in bees. In video-tracking recordings, bees were observed to spend significantly less time with an HCA-treated food source than an untreated source. In a high-tunnel experiment, the HCA piperidine was incorporated in a feeding station and found to significantly reduce bee visitations relative to an untreated feeder. In field experiments, bee visitations were significantly reduced on melon flowers (Cucumis melo L.) and flowering knapweed (Centaurea stoebe L.) that were sprayed with a piperidine solution, relative to untreated plants. In EAG recordings, the HCAs elicited antennal responses that were significantly different from control or vehicle responses. Overall, this study provides evidence that HCAs can deter individual bees from food sources and suggests that this deterrence is the result of antennal olfactory detection. These findings warrant further study into structure–activity relationships that could lead to the development of short-term repellent compounds that are effective deterrents to reduce the contact of bees to pesticide-treated plants.

Publisher

MDPI AG

Subject

Insect Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3