Determination of Key Components in the Bombyx mori p53 Apoptosis Regulation Network Using Y2H-Seq

Author:

Wang Meixian12ORCID,Wang Jiahao1,Yasen Ayinuer12,Fan Bingyan12,Hull J. Joe3ORCID,Shen Xingjia12ORCID

Affiliation:

1. Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China

2. Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China

3. USDA-ARS Arid Land Agricultural Research Center, Maricopa, AZ 85138, USA

Abstract

The apoptosis pathway is highly conserved between invertebrates and mammals. Although genes encoding the classical apoptosis pathway can be found in the silkworm genome, the regulatory pathway and other apoptotic network genes have yet to be confirmed. Consequently, characterizing these genes and their underlying mechanisms could provide critical insights into the molecular basis of organ apoptosis and remodeling. A homolog of p53, a key apoptosis regulator in vertebrates, has been identified and cloned from Bombyx mori (Bmp53). This study confirmed via gene knockdown and overexpression that Bmp53 directly induces cell apoptosis and regulates the morphology and development of individuals during the metamorphosis stage. Furthermore, yeast two-hybrid sequencing (Y2H-Seq) identified several potential apoptotic regulatory interacting proteins, including the MDM2-like ubiquitination regulatory protein, which may represent an apoptosis factor unique to Bmp53 and which differs from that in other Lepidoptera. These results provide a theoretical basis for analyzing the various biological processes regulated by Bmp53 interaction groups and thus provide insight into the regulation of apoptosis in silkworms. The global interaction set identified in this study also provides a basic framework for future studies on apoptosis-dependent pupation in Lepidoptera.

Funder

National Natural Science Foundation of China

2020 Jiangsu province “Entrepreneurship and Innovation Doctor”

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Publisher

MDPI AG

Subject

Insect Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3