Sequential and Simultaneous Interactions of Plant Allelochemical Flavone, Bt Toxin Vip3A, and Insecticide Emamectin Benzoate in Spodoptera frugiperda

Author:

Huang Kaiyuan1,He Haibo1,Wang Shan12,Zhang Min12,Chen Xuewei1,Deng Zhongyuan1ORCID,Ni Xinzhi3,Li Xianchun4ORCID

Affiliation:

1. School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China

2. School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China

3. USDA-ARS, Crop Genetics and Breeding Research Unit, University of Georgia-Tifton Campus, Tifton, GA 31793, USA

4. Department of Entomology and BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA

Abstract

Target pests of genetically engineered crops producing both defensive allelochemicals and Bacillus thuringiensis (Bt) toxins often sequentially or simultaneously uptake allelochemicals, Bt toxins, and/or insecticides. How the three types of toxins interact to kill pests remains underexplored. Here we investigated the interactions of Bt toxin Vip3A, plant allelochemical flavone, and insecticide emamectin benzoate in Spodoptera frugiperda. Simultaneous administration of flavone LC25 + Vip3A LC25, emamectin benzoate LC25 + Vip3A LC25, and flavone LC15 + emamectin benzoate LC15 + Vip3A LC15 but not flavone LC25 + emamectin LC25 yielded a mortality significantly higher than their expected additive mortality (EAM). One-day pre-exposure to one toxin at LC5 followed by six-day exposure to the same toxin at LC5 plus another toxin at LC50 showed that the mortality of flavone LC5 + Vip3A LC50, emamectin benzoate LC5 + Vip3A LC50, and Vip3A LC5 + emamectin benzoate LC50 were significantly higher than their EAM, while that of flavone LC5 + emamectin benzoate LC50 was significantly lower than their EAM. No significant difference existed among the mortalities of Vip3A LC5 + flavone LC50, emamectin benzoate LC5 + flavone LC50, and their EAMs. The results suggest that the interactions of the three toxins are largely synergistic (inductive) or additive, depending on their combinations and doses.

Funder

National Science Foundation of China (NSFC)—Henan Joint major

Key Scientific Research Projects of Colleges and Universities in Henan Province

State Key Laboratory of Cotton Biology

USDA National Institute of Food and Agriculture

Publisher

MDPI AG

Subject

Insect Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3