Predictions Based on Different Climate Change Scenarios: The Habitat of Typical Locust Species Is Shrinking in Kazakhstan and Xinjiang, China

Author:

Wu Rui,Guan Jing-YunORCID,Wu Jian-Guo,Ju Xi-Feng,An Qing-Hui,Zheng Jiang-Hua

Abstract

Climate change, especially climate extremes, can increase the uncertainty of locust outbreaks. The Italian locust (Calliptamus italicus (Linnaeus, 1758)), Asian migratory locust (Locusta migratoria migratoria Linnaeus, 1758), and Siberian locust (Gomphocerus sibiricus (Linnaeus, 1767)) are common pests widely distributed in the semidesert grasslands of Central Asia and its surrounding regions. Predicting the geographic distribution changes and future habitats of locusts in the context of climate warming is essential to effectively prevent large and sudden locust outbreaks. In this study, the optimized maximum entropy (MaxEnt) model, employing a combination of climatic, soil, and topographic factors, was used to predict the potential fitness areas of typical locusts in the 2030s and 2050s, assuming four shared socioeconomic pathways (SSP126, SSP245, SSP370, and SSP585) in the CMIP6 model. Modeling results showed that the mean area under the curve (AUC) and true statistical skill (TSS) of the MaxEnt model reached 0.933 and 0.7651, respectively, indicating that the model exhibited good prediction performance. Our results showed that soil surface sand content, slope, mean precipitation during the hottest season, and precipitation seasonality were the key environmental variables affecting locust distribution in the region. The three locust species were mainly distributed in the upstream region of the Irtysh River, the Alatao Mountain region, the northern slopes of the Tianshan Mountains, around Sayram Lake, the eastern part of the Alakol Lake region, the Tekes River region, the western part of Ulungur Lake, the Ili River, and the upstream region of the Tarim River. According to several climate projections, the area of potential habitat for the three most common locust species will decrease by 3.9 × 104–4.6 × 104 km2 by the 2030s and by 6.4 × 104–10.6 × 104 km2 by the 2050s. As the climate becomes more extreme, the suitable area will shrink, but the highly suitable area will expand; thus, the risk of infestation should be taken seriously. Our study present a timely investigation to add to extensive literature currently appearing regarding the myriad ways climate change may affect species. While this naturally details a limited range of taxa, methods and potential impacts may be more broadly applicable to other locust species.

Funder

injiang Tianshan Cedar Project

Xinjiang Grassland Biohazard Remote Sensing Monitoring Project

Xinjiang Grassland Pest Disaster Census Project

Publisher

MDPI AG

Subject

Insect Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3