Genome-Wide Identification and Expression Profiling of Candidate Sex Pheromone Biosynthesis Genes in the Fall Armyworm (Spodoptera frugiperda)

Author:

Qu Cheng,Kang ZhiweiORCID,Zhang Biyun,Fang YongORCID,Wang Ran,Li FengqiORCID,Zhao Haipeng,Luo Chen

Abstract

Spodoptera frugiperda is an agricultural pest causing substantial damage and losses to commercial crops. Sex pheromones are critical for successful mating in Lepidoptera and have been used for monitoring and control of many pest species. The sex pheromone of S. frugiperda is known, but the genes involved in its biosynthesis have not been identified. We systematically studied 99 candidate sex pheromone genes in the genome of S. frugiperda including 1 acetyl-CoA carboxylase (ACC), 11 fatty acid synthases (FASs), 17 desaturases (DESs), 4 fatty acid transport proteins (FATPs), 29 fatty acyl-CoA reductases (FARs), 17 acetyl-CoA acetyltransferases (ACTs), 5 acyl-CoA dehydrogenase (ACDs), 3 enoyl-CoA hydratases (ECHs), 3 hydroxyacyl-CoA dehydrogenases (HCDs), 6 ethyl-CoA thiolases (KCTs), and 3 acyl-CoA-binding proteins (ACBPs). Based on the comparative transcriptome results, we found 22 candidate sex pheromone biosynthesis genes predominately expressed in pheromone glands (PGs) than abdomens without PGs including SfruFAS4, SfruFATP3, SfruACD5, SfruKCT3, SfruDES2, SfruDES5, SfruDES11, SfruDES13, SfruFAR1, SfruFAR2, SfruFAR3, SfruFAR6, SfruFAR7, SfruFAR8, SfruFAR9, SfruFAR10, SfruFAR11, SfruFAR14, SfruFAR16, SfruFAR29, SfruACT6, and SfruACT10. A combination of phylogenetic and tissue-specific transcriptomic analyses indicated that SfruDES5, SfruDES11, SfruFAR2, SfruFAR3, and SfruFAR9 may be key genes involved in the sex pheromone synthesis of S. frugiperda. Our results could provide a theoretical basis for understanding the molecular mechanisms of sex pheromone biosynthesis in S. frugiperda, and also provide new targets for developing novel pest control methods based on disrupting sexual communication.

Funder

the Science and Technology Innovation Ability Construction of BAAFs

the key research and development program of Hunan Province

the Shandong Province Modern Agricultural Technology System Peanut Innovation Team, China

Hebei Natural Science Foundation

Publisher

MDPI AG

Subject

Insect Science

Reference56 articles.

1. Regulation of pheromone biosynthesis in moths;Jurenka;Curr. Opin. Insect Sci.,2017

2. Genes involved in the Type I pheromone biosynthesis pathway and chemoreception from the sex pheromone gland transcriptome of Dioryctria abietella;Xing;Comp. Biochem. Physiol. Part D: Genom. Proteom.,2021

3. Putative Pathway of Sex Pheromone Biosynthesis and Degradation by Expression Patterns of Genes Identified from Female Pheromone Gland and Adult Antenna of Sesamia inferens (Walker);Zhang;J. Chem. Ecol.,2014

4. Transcriptome analysis of the pheromone glands in Noorda blitealis reveals a novel AOX group of the superfamily Pyraloidea;Zhang;J. Asia-Pac. Èntomol.,2021

5. Analyses of lepidopteran sex pheromones by mass spectrometry;Ando;Trends Anal. Chem.,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3