Estimating the Global Geographical Distribution Patterns of the Invasive Crop Pest Diuraphis noxia Kurdjumov under Current and Future Climatic Scenarios

Author:

Jing Kaiting1,Li Ming1,Zhao Haoxiang1,Guo Jianyang1,Yang Nianwan12ORCID,Yang Ming1,Xian Xiaoqing1,Liu Wanxue1

Affiliation:

1. State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China

2. Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China

Abstract

Invasive crop pests (ICPs) are a major cause of crop losses and adversely affect global food security. Diuraphis noxia Kurdjumov is a significant ICP that feeds on the sap of crops, reducing crop yield and quality. Although estimating the geographical distribution patterns of D. noxia under climate change is critical for its management and global food security, such information remains unclear. Based on 533 global occurrence records and 9 bioclimatic variables, an optimized MaxEnt model was used to predict the potential global geographical distribution of D. noxia. The results showed that Bio1, Bio2, Bio7, and Bio12 were significant bioclimatic variables that influenced the potential geographical distribution of D. noxia. Under current climatic conditions, D. noxia was mainly distributed in west-central Asia, most of Europe, central North America, southern South America, southern and northern Africa, and southern Oceania. Under the SSP 1-2.6, SSP 2-4.5, and SSP 5-8.5 scenarios for the 2030s and 2050s, the potential suitable areas increased, and the centroid migrated to higher latitudes. The early warning of D. noxia in northwestern Asia, western Europe, and North America should be attended to further. Our results provide a theoretical basis for early monitoring and warning of D. noxia worldwide.

Funder

National Key R&D Program of China

Tian-Shan Talent Program

Technology Innovation Program of Chinese Academy of Agricultural Sciences

Publisher

MDPI AG

Subject

Insect Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3