Sublethal Effects of Pyridaben on the Predatory Function of Neoseiulus womersleyi

Author:

Song Cancan12,Li Chengcheng1,Wei Juan1,Zeng Hualan2,Yang Qunfang1,Jiang Surong1,Jiang Chunxian1,Li Qing1

Affiliation:

1. College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China

2. Industrial Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610300, China

Abstract

Pyridaben is a widely utilized, broad-spectrum contact acaricide, which has notable sublethal effects that impair the predatory capabilities of predatory mites, but the specific mechanisms that affect the predatory functions remain underexplored. When predatory mites hunt for prey, they may rely on Niemann–Pick-type C2 (NPC2) proteins to collect herbivore-induced plant volatiles (HIPVs) and other odor molecules to locate and pursue their prey. This study elucidated that pyridaben significantly diminished the predatory efficiency and searching behavior of the predatory mite Neoseiulus womersleyi. Key metrics, including predatory capacity (a/Th) and predation rate (a) on various developmental stages of Tetranychus urticae, were markedly reduced in treated mites compared to controls. The searching efficiency (S) also declined proportionally with the increased sublethal dose of pyridaben. A gene linked to olfactive functions, NwNPC2a, was cloned from N. womersleyi. Post-treatment with pyridaben at LC30 and LC50 concentrations resulted in a substantial downregulation of NwNPC2a expression by 60.15% and 58.63%, respectively. Silencing NwNPC2a in N. womersleyi females led to significant reductions in the attack rate (a), handling time (Th), predation efficiency (a/Th), and maximum predation rate (1/Th). The searching efficiency (S) was also lower than that of the control group, displaying a slight decline with the increasing prey density. The findings revealed that pyridaben exerted inhibitory effects on both the predatory function and searching efficiency of N. womersleyi populations. The decrease in predatory performance at LC30 and LC50 concentrations was attributable to the suppression of NwNPC2a gene expression. RNA interference (RNAi) studies corroborated that the NwNPC2a gene plays a critical role in the predation process of N. womersleyi. Thus, the underlying molecular mechanism through which pyridaben compromises the predatory function of N. womersleyi likely involves the downregulation of NwNPC2a expression.

Funder

Modern Agricultural Industry Technology System of the Sichuan Innovation Team

Publisher

MDPI AG

Reference42 articles.

1. Research status and prospects of pyridaben;Xu;Shandong Chem. Ind.,2016

2. Inhibitors of mitochondrial electron transport: Acaricides and insecticides;Sparks;Modern Crop Protection Compounds,2012

3. Status and research progress of acaricides;Yang;Mod. Agrochem.,2020

4. Comparison of conventional and integrated programs for control of Tetranychus urticae (Acari: Tetranychidae);Iwassaki;Exp. Appl. Acarol.,2015

5. Field control of strawberry Tetranychus urticae with bifenazate alone and in combination with Phytoseiulus persimilis;Jin;North. Hortic.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3