Intercropping Okra and Castor Bean Reduces Recruitment of Oriental Fruit Moth, Grapholita molesta (Lepidoptera: Tortricidae) in a Pear Orchard

Author:

Li Zhen1ORCID,Yu Jianmei12,Xu Haoyang1,Michaud J. P.3,Liu Yanjun1ORCID,Liu Xiaoxia1,Xu Huanli1

Affiliation:

1. Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China

2. Shandong Zibo Academy of Agricultural Sciences, Zibo 255033, China

3. Department of Entomology, Kansas State University, Agricultural Research Center-Hays, Hays, KS 67601, USA

Abstract

Intercrops can lower pest densities by increasing plant diversity, altering chemical communication in the arthropod community, and integrating well with other IPM tactics. We used two years of field observations and Y-tube olfactometer assays to explore the effects of intercropping a pear orchard with okra and castor bean on the cosmopolitan fruit-boring pest Grapholita molesta (Lepidoptera: Tortricidae). Intercropping okra reduced G. molesta trap catches in the pear orchard in both years, and intercropping with castor bean reduced them in the second year. Hydrocarbons, phenols, and ketones predominated in the GC-MS assay of okra volatiles, whereas castor bean volatiles were rich in aldehydes, ketones, and esters. Five of the commercially available volatiles released by these plants exhibited repellency to G. molesta in olfactometer trials, especially cinnamaldehyde, dibutyl phthalate, and thymol; the former compound also exhibited attraction to the egg parasitoid Trichogamma dendrolimi (Hymenoptera: Trichogrammatidae). In addition to their repellent properties, okra and castor bean may enhance integrated control of G. molesta in orchards by hosting prey that support populations of generalist predators that either provide biological pest control services within the orchard ecosystem or generate non-consumptive effects that contribute to pest deterence. Among the plant volatiles evaluated, cinnamaldehyde has the best potential for deployment in orchards to repel G. molesta without disrupting augmentative releases of T. dendrolimi.

Funder

China Agriculture Research System

Publisher

MDPI AG

Subject

Insect Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3