Chromosomal-Level Reference Genome for the Chinese Endemic Pygmy Grasshopper, Zhengitettix transpicula, Sheds Light on Tetrigidae Evolution and Advancing Conservation Efforts

Author:

Guan De-Long12ORCID,Chen Ya-Zhen2,Qin Ying-Can12,Li Xiao-Dong12ORCID,Deng Wei-An12ORCID

Affiliation:

1. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541006, China

2. Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, School of Chemistry and Bioengineering, Hechi University, Hechi 546300, China

Abstract

The pygmy grasshopper, Zhengitettix transpicula, is a Chinese endemic species with an exceedingly limited distribution and fragile population structure, rendering it vulnerable to extinction. We present a high-continuity, chromosome-scale reference genome assembly to elucidate this species’ distinctive biology and inform conservation. Employing an integrated sequencing approach, we achieved a 970.40 Mb assembly with 96.32% coverage across seven pseudo-chromosomes and impressive continuity (N50 > 220 Mb). Genome annotation achieves identification with 99.2% BUSCO completeness, supporting quality. Comparative analyses with 14 genomes from Orthoptera-facilitated phylogenomics and revealed 549 significantly expanded gene families in Z. transpicula associated with metabolism, stress response, and development. However, genomic analysis exposed remarkably low heterozygosity (0.02%), implying a severe genetic bottleneck from small, fragmented populations, characteristic of species vulnerable to extinction from environmental disruptions. Elucidating the genetic basis of population dynamics and specialization provides an imperative guideline for habitat conservation and restoration of this rare organism. Moreover, divergent evolution analysis of the CYP305m2 gene regulating locust aggregation highlighted potential structural and hence functional variations between Acrididae and Tetrigidae. Our chromosomal genomic characterization of Z. transpicula advances Orthopteran resources, establishing a framework for evolutionary developmental explorations and applied conservation genomics, reversing the trajectory of this unique grasshopper lineage towards oblivion.

Funder

National Natural Science Foundation of China

Science & Technology Fundamental Resources Investigation Program of China

Guangxi Natural Science Foundation

High level Innovation team and Outstanding Scholars Program of Guangxi Colleges and Universities

Scientific research project of Hechi University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3