Vitex negundo L. Essential Oil: Odorant Binding Protein Efficiency Using Molecular Docking Approach and Studies of the Mosquito Repellent

Author:

Okoli Bamidele JosephORCID,Ladan Zakari,Mtunzi FanyanaORCID,Hosea Yayock Chigari

Abstract

(1) Background: Malaria fever affects millions of people yearly in Africa and Asia’s tropical and subtropical areas. Because there is no effective vaccine, malaria prevention is solely dependent on avoiding human-vector interaction. (2) Aim: This study examines the interaction between the constituents of Vitex negundo essential oil and Anopheles gambiae Odorant Binding Proteins (OBP) as well as the compositional variation, repellent efficacy, and toxicity profile. (3) Methods: The oils were subjected to GC-MS and mosquito behavioral analysis. OBP–ligand interactions, Anopheles species authentication, and the toxicity profile were determined by molecular docking, PCR assay and in silico ADME/tox tool. Docking protocol validation was achieved by redocking the co-crystallized ligands into the protein binding pocket and root mean square deviation (RMSD) calculation. (4) Results: The oil yields and compositions are climate–soil dependent with ≈71.39% monoterpenes and ≈16.32% sesquiterpene. Optimal repellency is achieved at 15 min at ED50 0.08–0.48% v/v while the RMSD was estimated to be within 0.24–1.35 Å. Strong affinities were demonstrated by α-pinene (−6.4 kcal/mol), citronellal (−5.5 kcal/mol), linalool (−5.4 kcal/mol), and myrcene (−5.8 kcal/mol) for OBP1, OBP7, OBP4, and OBP; respectively. The hydrophobic interactions involve Leu17 (α-helix 1), Cys35 (α-helix 2), ALA52 (α-helix 3), Leu73, Leu76 (α-helix 4), Ala88, Met91, Lys93, Trp114 (α-helix 5), Phe123 (α-helix 6), and Leu124 (α-helix 7) receptors within the binding cavities, and may cause blocking of the olfactory receptors resulting in disorientation. (5) Conclusion: The ligand efficiency metrics, ADME/tox and repellency screening are within the threshold values; hence, α-pinene, linalool, and myrcene are safe and fit-to-use in the development of a green and novel repellent.

Publisher

MDPI AG

Subject

Insect Science

Reference84 articles.

1. Anopheles gambiae Bhttp://didaktorika.gr/eadd/handle/10442/7428

2. World Malaria Reporthttps://www.who.int/news-room/feature-stories/detail/world-malaria-report-2019

3. Malaria and COVID-19: Common and Different Findings

4. Prevalence of Malaria in Pregnant Women in Lagos, South-West Nigeria

5. Causes of morbidity and mortality among patients admitted in a tertiary hospital in southern Nigeria: A 6 year evaluation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3