Measuring the Inter and Intraspecific Sexual Shape Dimorphism and Body Shape Variation in Generalist Ground Beetles in Russia

Author:

Benítez Hugo A.ORCID,Sukhodolskaya Raisa A.ORCID,Órdenes-Clavería Rodrigo,Avtaeva Tamara A.,Kushalieva Shapaat A.,Saveliev Anatoly A.ORCID

Abstract

Ground beetles in multiple species vary greatly in the expression of the shape on sexual traits, resulting in a sexual shape dimorphism as a consequence of sexual selection differences. The present research focuses on the study of inter and intrasexual sexual shape dimorphism of two generalist genera of ground beetles Pterostichus and Carabus. Geometric morphometric methods were applied to five generalist species of ground beetles Carabus exaratus, C. granulatus, Pterostichus melanarius, P. niger, and P. oblongopunctatus and several multivariate analyses were applied for two different traits, abdomen and elytra. Three of the five species analyzed showed high levels of sex-based shape dimorphism. However, the most generalist species, P. melanarius and P. oblongopunctatus, did not evidence shape-based sexual dimorphism differentiation in both of the analyzed traits, as statistically confirmed based on the permutation of pairwise comparison of the Mahalanobis distances of a sex–species classifier. It is generally known that environmental stress in natural populations can affect the fitness expression, principally related to sexual fecundity, being that this pattern is more evident in non-generalist species. In our results, the contrary pattern was found, with the absence of sexual shape dimorphism for two of the three generalist species analyzed. On the other hand, the interspecies shape variation was clearly identified using principal component analysis of both of the analyzed traits. Finally, this research is the first to analyze the relationship between sexual shape dimorphism in Russian ground beetles, evidencing the lack of understanding of the mechanism underlying the sexual dimorphism, especially in species living in extreme environments.

Publisher

MDPI AG

Subject

Insect Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3