Antibiotic Treatment Decrease the Fitness of Honeybee (Apis mellifera) Larvae

Author:

Duan Xinle,Zhao Bi’an,Jin Xin,Cheng Xuefen,Huang ShaokangORCID,Li Jianghong

Abstract

Symbiotic bacteria could increase the nutrient provision, regulate the physiological state, and promote immunity in their insect host. Honeybee larvae harbor plenty of bacteria in their gut, but their functions are not well studied. To determine their effect on honeybee larvae, the 1-day-old larvae were grafted on to 24-well plates from the comb and artificially reared in the lab. They were treated with penicillin–streptomycin to remove the gut symbiotic bacteria. Then, the 5-day-old larvae and the newly emerged adults were weighted. The developmental periods to pupae and eclosion were investigated, respectively. The bacterial amount, expression of developmental regulation genes (ecr and usp), nutrient metabolism genes (ilp1, ilp2, hex 70a, hex 70b, hex 70c, and hex 110), and immunity genes (apidaecin, abaecin, defensin-1, and hymenoptaecin) were determined by qRT-PCR. The result showed that the antibiotics-treated larvae have significantly lower body weights in the 5-day-old larvae and the emerged bees. The expression of ilp2 and hex 70c in 5-day-old larvae was down-regulated. The usp was down-regulated in 5-day-old larvae, but increased in 7-day-old larvae, which disturbed the normal developmental process and caused the extension of eclosion. Moreover, antibiotics treatment significantly decreased the expression of apidaecin and abaecin in 5-day-old larvae, and defensin-1 and hymenoptaecin in 7-day-old larvae, respectively. These results showed that antibiotics could weaken the nutrient metabolism, disturb the development process, and decrease the immune competence of honeybee larvae, indicating the vital roles of gut bacteria in bee larvae fitness, so the antibiotics should be avoided to control microbial disease in honeybee larvae.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Insect Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3