Transcriptomic Analysis Insight into the Immune Modulation during the Interaction of Ophiocordyceps sinensis and Hepialus xiaojinensis

Author:

Tong Xinxin,Peng Ting,Liu Sukun,Zhang Daixi,Guo Jinlin

Abstract

Ophiocordyceps sinensis (Berk.) is an entomopathogenic fungus that can infect the larva of the ghost moth, Hepialus xiaojinensis, causing mummification after more than one year. This prolonged infection provides a valuable model for studying the immunological interplay between an insect host and a pathogenic fungus. A comparative transcriptome analysis of pre-infection (L) and one-year post-infection (IL) larvae was performed to investigate the immune response in the host. Here, a total of 59,668 unigenes were obtained using Illumina Sequencing in IL and L. Among the 345 identified immune-related genes, 83 out of 86 immune-related differentially expressed genes (DEGs) had a much higher expression in IL than in L. Furthermore, the immune-related DEGs were classified as pathogen recognition receptors (PRRs), signal modulators or transductors, and immune effector molecules. Serpins and protease inhibitors were found to be upregulated in the late phase of infection, suppressing the host’s immune response. Based on the above analysis, the expression levels of most immune-related genes would return to the baseline with the immune response being repressed in the late phase of infection, leading to the fungal immunological tolerance after prolonged infection. Meanwhile, the transcriptomes of IL and the mummified larva (ML) were compared to explore O. sinensis invasion. A total of 1408 novel genes were identified, with 162 of them annotated with putative functions. The gene families likely implicated in O. sinensis pathogenicity have been identified, primarily including serine carboxypeptidase, peroxidase, metalloprotease peptidase, aminopeptidases, cytochrome P450, and oxidoreductase. Furthermore, quantitative real-time PCR (qPCR) was used to assess the expression levels of some critical genes that were involved in immune response and fungal pathogenicity. The results showed that their expression levels were consistent with the transcriptomes. Taken together, our findings offered a comprehensive and precise transcriptome study to understand the immune defense in H. xiaojinensis and O. sinensis invasion, which would accelerate the large-scale artificial cultivation of this medicinal fungus.

Funder

Natural Sciences Foundation of China Science

Publisher

MDPI AG

Subject

Insect Science

Reference57 articles.

1. Chinese caterpillar fungus (Ophiocordyceps sinensis) in China: Current distribution, trading, and futures under climate change and overexploitation;Wei;Sci. Total Environ.,2021

2. Ophiocordyceps sinensis, the flagship fungus of China: Terminology, life strategy and ecology;Zhang;Mycology,2012

3. The Mechanisms of Pharmacological Activities of Ophiocordyceps sinensis Fungi;Xu;Phytother. Res.,2016

4. Economic aspects of harvesting and trading the Chinese Caterpillar Fungus Ophiocordyceps sinensis and Southern Schisandra Schisandra sphenanthera in China’s Upper Yangtze Ecoregion;Guo;Traffic Bull.,2012

5. A breakthrough in the artificial cultivation of Chinese cordyceps on a large-scale and its impact on science, the economy, and industry;Li;Crit. Rev. Biotechnol.,2019

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3