Affiliation:
1. Department of Environment & Biodiversity, Paris-Lodron University of Salzburg, Hellbrunnerstr. 34, 5020 Salzburg, Austria
Abstract
Many wild plants and crops are pollinated by insects, which often use floral scents to locate their host plants. The production and emission of floral scents are temperature-dependent; however, little is known about how global warming affects scent emissions and the attraction of pollinators. We used a combination of chemical analytical and electrophysiological approaches to quantify the influence of a global warming scenario (+5 °C in this century) on the floral scent emissions of two important crop species, i.e., buckwheat (Fagopyrum esculentum) and oilseed rape (Brassica napus), and to test whether compounds that are potentially different between the treatments can be detected by their bee pollinators (Apis mellifera and Bombus terrestris). We found that only buckwheat was affected by increased temperatures. Independent of temperature, the scent of oilseed rape was dominated by p-anisaldehyde and linalool, with no differences in relative scent composition and the total amount of scent. Buckwheat emitted 2.4 ng of scent per flower and hour at optimal temperatures, dominated by 2- and 3-methylbutanoic acid (46%) and linalool (10%), and at warmer temperatures threefold less scent (0.7 ng/flower/hour), with increased contributions of 2- and 3-methylbutanoic acid (73%) to the total scent and linalool and other compounds being absent. The antennae of the pollinators responded to various buckwheat floral scent compounds, among them compounds that disappeared at increased temperatures or were affected in their (relative) amounts. Our results highlight that increased temperatures differentially affect floral scent emissions of crop plants and that, in buckwheat, the temperature-induced changes in floral scent emissions affect the olfactory perception of the flowers by bees. Future studies should test whether these differences in olfactory perception translate into different attractiveness of buckwheat flowers to bees.
Reference73 articles.
1. FAO-Food and Agriculture Organization (2010). ‘Climate-Smart’ Agriculture, Policies, Practices and Finances for Food Security, Adaptation and Mitigation, FAO.
2. United Nations (2014). Open Working Group of the General Assembly on Sustainable Development Goals, United Nations. Full report A/68/970.
3. Changes in crop yields and their variability at different levels of global warming;Ostberg;Earth Syst. Dyn.,2018
4. Insect evolution;Engel;Curr. Biol.,2015
5. Eilers, E.J., Kremen, C., Greenleaf, S.S., Garber, A.K., and Klein, A.M. (2011). Contribution of pollinator-mediated crops to nutrients in the human food supply. PLoS ONE, 6.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献