Effects of Different Nitrogen Sources and Ratios to Carbon on Larval Development and Bioconversion Efficiency in Food Waste Treatment by Black Soldier Fly Larvae (Hermetia illucens)

Author:

Lu Yan,Zhang Shouyu,Sun ShiboORCID,Wu Minghuo,Bao YongmingORCID,Tong HuiyanORCID,Ren Miaomiao,Jin Ning,Xu Jianqiang,Zhou HaoORCID,Xu WeipingORCID

Abstract

Biowaste treatment by black soldier fly larvae (BSFL, Hermetia illucens) has received global research interest and growing industrial application. Larvae farming conditions, such as temperature, pH, and moisture, have been critically examined. However, the substrate carbon to nitrogen ratio (C/N), one of the key parameters that may affect larval survival and bioconversion efficiency, is significantly less studied. The current study aimed to compare the nitrogen supplying effects of 9 nitrogen species (i.e., NH4Cl, NaNO3, urea, uric acid, Gly, L-Glu, L-Glu:L-Asp (1:1, w/w), soybean flour, and fish meal) during food waste larval treatment, and further examine the C/N effects on the larval development and bioconversion process, using the C/N adjustment with urea from the initial 21:1 to 18:1, 16:1, 14:1, 12:1, and 10:1, respectively. The food wastes were supplied with the same amount of nitrogen element (1 g N/100 g dry wt) in the nitrogen source trial and different amount of urea in the C/N adjustment trial following larvae treatment. The results showed that NH4Cl and NaNO3 caused significant harmful impacts on the larval survival and bioconversion process, while the 7 organic nitrogen species resulted in no significant negative effect. Further adjustment of C/N with urea showed that the C/N range between 18:1 and 14:1 was optimal for a high waste reduction performance (73.5–84.8%, p < 0.001) and a high larvae yield (25.3–26.6%, p = 0.015), while the C/N range of 18:1 to 16:1 was further optimal for an efficient larval protein yield (10.1–11.1%, p = 0.003) and lipid yield (7.6–8.1%, p = 0.002). The adjustment of C/N influenced the activity of antioxidant enzymes, such as superoxide dismutase (SOD, p = 0.015), whereas exerted no obvious impact on the larval amino acid composition. Altogether, organic nitrogen is more suitable than NH4Cl and NaNO3 as the nitrogen amendment during larval food waste treatment, addition of small amounts of urea, targeting C/N of 18:1–14:1, would improve the waste reduction performance, and application of C/N at 18:1–16:1 would facilitate the larval protein and lipid bioconversion process.

Funder

Dalian University of Technology

Yingkou Science and Technology Bureau

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Insect Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3