Microplitis manilae Ashmead (Hymenoptera: Braconidae): Biology, Systematics, and Response to Climate Change through Ecological Niche Modelling

Author:

Ghafouri Moghaddam Mostafa1ORCID,Butcher Buntika A.1

Affiliation:

1. Integrative Ecology Laboratory, Department of Biology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand

Abstract

The parasitoid wasp Microplitis manilae Ashmead (Braconidae: Microgastrinae) is an important natural enemy of caterpillars and of a range of noctuids, including pest species of armyworms (Spodoptera spp.). Here, the wasp is redescribed and, for the first time, illustrated based on the holotype. An updated list of all the Microplitis species attacking the noctuid Spodoptera spp. along with a discussion on host-parasitoid-food plant associations is offered. Based on information about the actual distribution of M. manilae and a set of bioclimatic variables, the maximum entropy (MaxEnt) niche model and the quantum geographic information system (QGIS) were explored to predict the potential distribution of this wasp in a global context. The worldwide geographical distribution of potential climatic suitability of M. manilae at present and in three different periods in the future was simulated. The relative percent contribution score of environmental factors and the Jackknife test were combined to identify dominant bioclimatic variables and their appropriate values influencing the potential distribution of M. manilae. The results showed that under current climate conditions, the prediction of the maximum entropy model highly matches the actual distribution, and that the obtained value of simulation accuracy was very high. Likewise, the distribution of M. manilae was mainly affected by five bioclimatic variables, listed in order of importance as follows: precipitation during the wettest month (BIO13), annual precipitation (BIO12), annual mean temperature (BIO1), temperature seasonality (BIO4), and mean temperature during the warmest quarter (BIO10). In a global context, the suitable habitat of M. manilae would be mainly in tropical and subtropical countries. Furthermore, under the four greenhouse gas concentration scenarios (representative concentration pathways: RCP2.6, RCP4.5, RCP6.0, and RCP8.5) in the future period of the 2070s, the areas with high, medium, and low suitability showed varying degrees of change from current conditions and are expected to expand in the future. This work provides theoretical backing for studies associated with the safeguarding of the environment and pest management.

Funder

Rachadaphiseksomphot Fund, Graduate School, Chulalongkorn University

Thailand Science Research and Innovation Fund Chulalongkorn University

Publisher

MDPI AG

Subject

Insect Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3