Combined PacBio Iso-Seq and Illumina RNA-Seq Analysis of the Tuta absoluta (Meyrick) Transcriptome and Cytochrome P450 Genes

Author:

Liu Min1,Xiao Feng1,Zhu Jiayun1,Fu Di1,Wang Zonglin1,Xiao Rong1

Affiliation:

1. Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025, China

Abstract

Tuta absoluta (Meyrick) is a devastating invasive pest worldwide. The abamectin and chlorantraniliprole complex have become an alternative option for chemical control because they can enhance insecticidal activity and delay increased drug resistance. Notably, pests are inevitably resistant to various types of insecticides, and compound insecticides are no exception. To identify potential genes involved in the detoxification of abamectin and chlorantraniliprole complex in T. absoluta, PacBio SMRT-seq transcriptome sequencing and Illumina RNA-seq analysis of abamectin and chlorantraniliprole complex-treated T. absoluta were performed. We obtained 80,492 non-redundant transcripts, 62,762 (77.97%) transcripts that were successfully annotated, and 15,524 differentially expressed transcripts (DETs). GO annotation results showed that most of these DETs were involved in the biological processes of life-sustaining activities, such as cellular, metabolic, and single-organism processes. The KEGG pathway enrichment results showed that the pathways related to glutathione metabolism, fatty acid and amino acid synthesis, and metabolism were related to the response to abamectin and chlorantraniliprole complex in T. absoluta. Among these, 21 P450s were differentially expressed (11 upregulated and 10 downregulated). The qRT-PCR results for the eight upregulated P450 genes after abamectin and chlorantraniliprole complex treatment were consistent with the RNA-Seq data. Our findings provide new full-length transcriptional data and information for further studies on detoxification-related genes in T. absoluta.

Funder

Guizhou Provincial Science and Technology Projects

Publisher

MDPI AG

Subject

Insect Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3