The Molecular and Functional Characterization of Sensory Neuron Membrane Protein 1b (SNMP1b) from Cyrtotrachelus buqueti (Coleoptera: Curculionidae)

Author:

Yang Hua1,Liu Long1ORCID,Wang Fan1,Yang Wei1,Huang Qiong1,Wang Nanxi1,Hu Hongling1

Affiliation:

1. National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China

Abstract

Sensory neuron membrane proteins (SNMPs) play important roles in insect chemoreception and SNMP1s have been reported to be essential in detecting sex pheromones in Drosophila and some lepidopteran species. However, SNMPs for Cyrtotrachelus buqueti (Coleoptera: Curculionidae), a major insect pest of bamboo plantations, remain uncharacterized. In this study, a novel SNMP gene, CbuqSNMP1b, from C. buqueti was functionally characterized. The expression of CbuqSNMP1b was significantly higher in antennae than in other tissues of both sexes and the expression level was significantly male-biased. Additionally, CbuqSNMP1b showed significantly higher transcription levels in the adult stage and very low transcription levels in other stages, suggesting that CbuqSNMP1b is involved in the process of olfaction. Fluorescence binding assays indicated that CbuqSNMP1b displayed the strongest binding affinity to dibutyl phthalate (Ki = 9.03 μM) followed by benzothiazole (Ki = 11.59 μM) and phenol (Ki = 20.95 μM) among fourteen C. buqueti volatiles. Furthermore, molecular docking revealed key residues in CbuqSNMP1b that interact with dibutyl phthalate, benzothiazole, and phenol. In conclusion, these findings will lay a foundation to further understand the olfactory mechanisms of C. buqueti and promote the development of novel methods for controlling this pest.

Funder

International Cooperation Project of Science and Technology Department of Sichuan Province

Southern Xinjiang Key Laboratory Project of IPM

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3