Self-Recognition and Allorecognition Mechanisms Exert a Significant Influence on the Sex Allocation Patterns of the Pea Aphid

Author:

Li Yang1ORCID,Akimoto Shin-Ichi2,Jing Shi-Yi1

Affiliation:

1. College of Biology and Agriculture, Zunyi Normal University, Zunyi 563006, China

2. Department of Ecology and Systematics, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan

Abstract

The mechanism controlling sex allocation in the pea aphid, Acyrthosiphon pisum (Harris), remains a crucial yet unresolved issue in the field of evolutionary ecology. This study aims to assess the influence of the presence of both self and non-self clones, along with juvenile hormone III (JH III) titer, on the sex allocation of aphid offspring. To this end, red and green clones were utilized as experimental subjects, and the agar method was employed. Initially, three distinct experimental treatments were established using sexuparae, and the daily offspring count and sex allocation in each treatment zone were recorded. Subsequently, an additional experimental condition involving mixed-clone treatments was introduced. This procedure entailed the transfer of a single sexupara and 20 oviparous females from either the red (1G + 20Rov) or green clone (1G + 20Gov) onto a leaf on agar medium. Simultaneously, a control setup with a new sexupara (1G) was established. Three days following sexupara production, a dose of 0, 25, or 50 ng of JH III was applied to the aphids’ abdomens. Subsequently, the titers of JH III in the sexuparae across each treatment group were quantified, and the extent of sex allocation was tallied. The findings demonstrated pronounced disparities in sex allocation among the various treatments and, notably, a substantial increase in the total offspring and oviparous number in the mixed-clone treatment group. The effects of mixed-clone treatment on the sex allocation patterns of the sexupara progeny could be determined by the application of exogenous JH III, indicating that JH may mediate the effects of mixed-clone treatment on sex allocation. Consequently, it can be concluded that A. pisum sexuparae possess the capability to modulate their sex allocation in response to the nature of adjacent competitor clones, thereby demonstrating a variety of sex allocation patterns. Throughout this process, JH III plays a pivotal role.

Funder

National Natural Science Foundation of China

Doctoral Fund Project of Zunyi Normal University

Project of Zunyi Science and Technology Bureau

Japan Society for the Promotion of Science

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3