Culicoides-Specific Fitness Increase of Vesicular Stomatitis Virus in Insect-to-Insect Infections

Author:

Rozo-Lopez Paula1ORCID,Drolet Barbara S.2ORCID

Affiliation:

1. Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA

2. Arthropod-Borne Animal Diseases Research Unit, United States Department of Agriculture, Manhattan, KS 66502, USA

Abstract

Vesicular stomatitis virus (VSV) is an arthropod-borne virus affecting livestock. In the United States, sporadic outbreaks result in significant economic losses. During epizootics, Culicoides biting midges are biological vectors and key to the geographic expansion of outbreaks. Additionally, Culicoides may play a role in VSV overwintering because females and males are capable of highly efficient venereal transmission, despite their relatively low virus titers. We hypothesized that VSV propagated within a midge has increased fitness for subsequent midge infections. To evaluate the potential host-specific fitness increase, we propagated three viral isolates of VSV in porcine skin fibroblasts and Culicoides cell lines. We then evaluated the viral infection dynamics of the different cell-source groups in Culicoides sonorensis. Our results indicate that both mammalian- and insect-derived VSV replicate well in midges inoculated via intrathoracic injection, thereby bypassing the midgut barriers. However, when the virus was required to infect and escape the midgut barrier to disseminate after oral acquisition, the insect-derived viruses had significantly higher titers, infection, and dissemination rates than mammalian-derived viruses. Our research suggests that VSV replication in Culicoides cells increases viral fitness, facilitating midge-to-midge transmission and subsequent replication, and further highlights the significance of Culicoides midges in VSV maintenance and transmission dynamics.

Funder

USDA, ARS-Kansas State University Cooperative Agreement

USDA, ARS, NP103 Animal Health National Program

Biology Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3