Host Immunosuppression Induced by Steinernema feltiae, an Entomopathogenic Nematode, through Inhibition of Eicosanoid Biosynthesis

Author:

Chandra Roy Miltan,Lee Dongwoon,Kim Yonggyun

Abstract

Steinernema feltiae K1 (Filipjev) (Nematode: Steinernematidae), an entomopathogenic nematode, was isolated and identified based on its morphological and molecular diagnostic characteristics. Its infective juveniles (IJs) were highly pathogenic to three lepidopteran (LC50 = 23.7–25.0 IJs/larva) and one coleopteran (LC50 = 39.3 IJs/larva) insect species. Infected larvae of the diamondback moth, Plutella xylostella (L.) (Insecta: Lepidoptera), exhibited significant reduction in phospholipase A2 (PLA2) activity in their plasma. The decrease of PLA2 activity was followed by significant septicemia of the larvae infected with S. feltiae. Insecticidal activity induced by S. feltiae was explained by significant immunosuppression in cellular immune responses measured by hemocyte nodule formation and total hemocyte count (THC). Although S. feltiae infection suppressed nodule formation and THC in the larvae, an addition of arachidonic acid (AA, a catalytic product of PLA2) rescued these larvae from fatal immunosuppression. In contrast, an addition of dexamethasone (a specific PLA2 inhibitor) enhanced the nematode’s pathogenicity in a dose-dependent manner. To discriminate the immunosuppressive activity of a symbiotic bacterium (Xenorhabdus bovienii (Proteobacteria: Enterobacterales)) from the nematode, kanamycin was applied to after nematode infection. It significantly inhibited the bacterial growth in the hemolymph. Compared to nematode treatment alone, the addition of antibiotics to nematode infection partially rescued the immunosuppression measured by phenol oxidase activity. Consequently, treatment with antibiotics significantly rescued the larvae from the insecticidal activity of S. feltiae. These results suggest that immunosuppression induced by infection of S. feltiae depends on its symbiotic bacteria by inhibiting eicosanoid biosynthesis, resulting in significant insect mortality. However, the addition of antibiotics or AA could not completely rescue the virulence of the nematode, suggesting that the nematode itself also plays a role in its insecticidal activity.

Funder

National Research Foundation

Publisher

MDPI AG

Subject

Insect Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3