Transcriptomic Identification and Expression Profile Analysis of Odorant-Degrading Enzymes from the Asian Corn Borer Moth, Ostrinia furnacalis

Author:

Zhang Liya,Shen Yidan,Jiang Xingchuan,Liu SuORCID

Abstract

The Asian corn borer moth Ostrinia furnacalis is an important lepidopteran pest of maize in Asia. Odorant-degrading enzymes (ODEs), including carboxylesterases (CCEs), glutathione S-transferases (GSTs), cytochrome P450s (CYPs), UDP-glycosyltransferases (UGTs), and aldehyde oxidases (AOXs), are responsible for rapid inactivation of odorant signals in the insect antennae. In this study, we performed a transcriptome assembly for the antennae of O. furnacalis to identify putative ODE genes. Transcriptome sequencing revealed 35,056 unigenes, and 21,012 (59.94%) of these were annotated by searching against the reference sequences in the NCBI non-redundant (NR) protein database. For functional classification, these unigenes were subjected to Gene Ontology (GO), Eukaryotic Orthologous Groups (KOG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations. We identified 79 genes encoding putative ODEs: 19 CCEs, 17 GSTs, 24 CYPs, 13 UGTs, and 6 AOXs. BLASTX best hit results indicated that these genes shared quite high amino acid identities with their respective orthologs from other lepidopteran species. Reverse transcription-quantitative PCR showed that OfurCCE2, OfurCCE5, and OfurCCE18 were enriched in male antennae, while OfurCCE7 and OfurCCE10 were enriched in female antennae. OfurCCE14 and OfurCCE15 were expressed at near-equal amounts in the antennae of both sexes. Our findings establish a solid foundation for future studies aimed at understanding the olfactory functions of these genes in O. furnacalis.

Funder

National Natural Science Foundation of China

Anhui Provincial Natural Science Foundation

National Undergraduate Training Program for Innovation and Entrepreneurship

Publisher

MDPI AG

Subject

Insect Science

Reference69 articles.

1. Insect olfactory communication in a complex and changing world;Renou;Curr. Opin. Insect Sci.,2020

2. Odorant reception in insects: Roles of receptors, binding proteins, and degrading enzymes;Leal;Annu. Rev. Entomol.,2013

3. Molecular evolution of the major arthropod chemoreceptor gene families;Robertson;Annu. Rev. Entomol.,2019

4. Diversity of biotransformation enzymes in insect antennae: Possible roles in odorant inactivation and xenobiotic processing;Picimbon;Olfactory Concepts of Insect Control—Alternative to Insecticides,2019

5. An overview of antennal esterases in Lepidoptera;Godoy;Front. Physiol.,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3